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Critical properties of the Ashkin-Teller model from the 
mean-field renormalisation group approach? 

J A Plascak and F C S i  Barreto 
Departamento de Fisica-ICEx, Universidade Federal de Minas Gerais, 30000, Belo 
Horizonte, Brazil 

Received 17 July 1985 

Abstract. By using small size clusters, which carry all the basic symmetries of the Ashkin- 
Teller model, we obtain within the mean-field renormalisation group approach the complete 
phase diagram of the model. Estimates of the thermal critical exponent are also obtained. 

The Ashkin-Teller model (ATM) is a generalisation of the Ising model to a four- 
component system. In this case, each site of the lattice is occupied by one of four 
different types of atoms A, B, C or D (Ashkin and Teller 1943). In terms of spin 
variables it can be considered as two superposed spin-$ Ising models described, 
respectively, by ui and Si sitting on each of the sites of a d-dimensional hypercubic 
lattice (Fan 1972). Within each Ising model there is a two-spin nearest-neighbour 
interaction J2 and the different Ising models are coupled by a four-spin interaction J4. 
The Hamiltonian can then be written as 

-pX = H = C [ K2(  uiuj + SiSj) + K 4 ~ i ~ j S i S j ]  (1) 

where p = ( kB T)- ' ,  K 2  = pJ2  and K4 = pJ4. This model has a very rich phase diagram. 
Although some exact results are known for the two-dimensional model (Fan and Wu 
1970, h o p s  1975, Baxter 1982 and references therein) only mean-field results are 
available for d > 2 (Ditzian et af 1980, Cristiano and Goulart Rosa 1984). 

In this paper we study the critical properties of the ATM through the mean-field 
renormalisation group ( MFRG) approach (Indekeu et al 1982). We consider herein 
just the simplest choice for the clusters, namely one- and two-site clusters. 

( V )  

The Hamiltonian for the one-site cluster is 

H I  = Z K ; u ,  h b +  Z K i S ,  hL+ ZK:ulS1 hbs (2) 

where 2 is the lattice coordination number and hb, h i  and hb, are the symmetry 
breaking boundary fields simulating the effect of the infinite system. The order para- 
meters associated with the spin variables U, S and US obtained from the Hamiltonian 
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(2) are easily evaluated: 

where 

t b  = tanh 2K;hb t ;  = tanh ZK;hS tbs = tanh 2K;hbs.  ( 3 e )  
Relations ( 3 )  are just the mean-field equations when the symmetry breaking fields are 
approximated by their order parameters (Ditzian et a1 1980). 

The Hamiltonian for the two-site cluster reads 

H2 = K2( a 2  + Si Sz) + K4a1 Si a2S2 + (2 - 1 ) 

x[Kz(ai+az)ho+K2(Si+Sz)h~+K4(~iSi+(+zSz)h,sJ.  (4) 
Similarly, we obtain 

where 

tu = tanh 2 ( 2  - 1)K2h, 

c, = cosh 2 ( 2  - 1)K2h, 

X =exp(-2K2-2K4) Y=exp(-4K2). 

The critical properties of the ATM are obtained by assuming that the approximated 
magnetisations scale as mi = &ml ( i  = a, S or as) and imposing a similar relation for 
the symmetry breaking fields, i.e. hl = tihi (Indekeu et a1 1982). As in d = 2 all the 
phase transition lines of the ATM are of second order, the respective symmetry breaking 
field must be considered very small. The equations obtained from the scaling relation 
between these two clusters are then independent of el and can be viewed as a 
renormalisation recursion relation among the Hamiltonian parameters ( K ; ,  K ; )  and 
( K 2 ,  K4). Due to the fact that this model contains two different interaction couplings, 
the complete flow diagram in the parameter space cannot be obtained. However, 
estimates of the critical exponent Y, associated with some invariant sets in the ( K z ,  K4) 
space, can be calculated through (JKi /dK2) , ,=  l””, where 1 = 2’Id and the derivative 
is taken at the fixed point of the particular invariant set considered. 

Although the present formalism, as can be seen from equations ( 3 )  and ( 5 ) ,  can 
easily be extended to any dimension, in what follows we will be mainly concerned 
with the two-dimensional model, where several exact results are available. 

Figure 1 shows the phase diagram of the ATM in a‘ = 2. In the phase labelled as 
‘Baxter’ we have (a)  # 0, ( S )  # 0 and (as) # 0 while in the paramagnetic phase (‘para’) 
neither a nor S (nor the product as) are ordered. In the ‘(as)’ phase we have a and 
S disordered ( (a)  = 0 and ( S )  = 0) with (as) ordered ferromagnetically. The 
phase is similar to the ‘(as)’ phase but in this case (as) is ordered antiferromagnetically. 

ts = tanh 2 (Z  - 1)K2hs 

cs = cosh 2 ( 2  - l ) K z h s  

tus = tanh 2 ( 2  - 1)K4hUs 

cws = cosh 2 ( 2 -  1)K4hus ( 5 e )  
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The transition from the ‘Baxter’ to the ‘para’ phase is characterised by the vanishing 
of all order parameters. Thus, for small fields, equations (3 )  and ( 5 )  can be written as 

m b  = ZK;hb m$ = ZKih$ mbs = ZK;hbs 

m, = ( 1 + X)2( Z - 1 ) K, h,/ Do 
and 

m, = ( 1 + X)2( Z - 1) K2 hs/ Do (7) 
m,,=(l+ Y)2(Z-1)K4h,,/Do 

where Do= 1 + 2 X +  Y. From the scaling relation between mb, m$ and mu, m, we 
obtain 

ZK 4 = [ ( 1 + X)2( Z - 1) K2]/ Do 

which is interpreted as a renormalisation recursion relation among the Hamiltonian 
parameters. The fixed point solution of (8), namely 

K2 =f ln(Z/{[exp(-4K4) + Z ( Z  -2)]’”-exp(-2K4)}) (9) 
gives the phase transition line where both U and S (and, of course, (US)) independently 
order. Equation (9) corresponds to the AIP line on the phase diagram shown in 
figure 1. 

In the transition from the ‘para’ to the ‘(US)’ phase only (US)  orders while a and 
S remain disordered. From the scaling relation between mbs and mus, given in ( 6 )  
and (7), one has 

ZK = (1 + Y)2( Z - 1) K4/ Do. (10) 

(11) 

The fixed point solution of (10) is 

K2=i ln ({Z  exp(-2K4)/(Z-2) -[Z2 exp(-4K4)/(Z-2)*- 1]1’2}-1) 

and corresponds to the PC line in figure 1. The transition line from the ‘para’ to the 
phase is obtained in a similar way. We have, in this case, to consider K4 < 0 

and adjust the field h,, in an antiferromagnetic way. The final result for the fixed 
point solution so obtained for the ED transition line is 

K2 = a cosh-’[(Z -2) exp(2K4)/Z]. (12) 
Obtaining the transition from the ‘Baxter’ to the ‘(as)’ phase is more subtle. In 

this case, a and S disorder at the transition while (US)  remains different from zero. 
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Therefore, for small fields associated with the variables U and S equations ( 3 )  and (5) 
read 

mb= ZK;hb+ZK;h$ tb ,  mk = ZK;h$+ZK;hk tb ,  mbs = tbs ( 1 3 )  

and 
mu = [( 1 + X / c o s ) 2 ( Z  - 1)K2h, + 2 ( 2  - 1)KzhstmsI/D1 

mS = [ ( 1 + X /  cus)2( Z - 1 ) K 2  hs + 2 ( Z  - 1 ) K,h,t ,~l/  Dl 

mos = (1 + Y)tUS/Dl 

(14) 

where 

D,=1+  Y + 2 X / c u s .  

As can be seen from equations ( 1 3 )  and (14 )  the order parameters associated with 
U and S are now dependent on both scaling fields. On the other hand, in this transition 
we expect that ( U )  = ( S ) .  Therefore, taking m b =  mk and mu = ms with the same 
relations for the respective scaling fields one obtains 

( 1  + t:s)zK; = ( 1  + tus + X/cuS)2(Z - 1)K2/D1. (15) 

The above equation still depends on the fields hbs and hus reflecting the fact that 
(US) # 0. This variable has its own size dependence which is not governed by finite-size 
scaling along this transition line. It is then reasonable to assume that mbs = mus and 
hbs = hus obtaining 

tbs = (1 + Y )  tus l  D, hbs = h,s. (16) 

The PB critical line is given by the fixed point solutions of equation (15) where hos is 
eliminated via equation (16). The assumption used here to treat the non-critical 
behaviour associated with the variable US is conceptually different from the mean-field 
ansatz used in the treatment of the antiferromagnetic Ising model on the triangular 
lattice (Slotte 1984) and the spin-1 biquadratic Ising model (Alcantara Bonfim and SQ 
Barreto 1985). In the present case, we are able to compute an approximate mean value 
(as) as a function of the temperature along the PB line as shown in figure 2 .  It is 
clear from this figure that the physically expected behaviour for this variable is obtained. 

\ 
1 0 --- -1 

I 

‘\ 

I 

sost 

~ 

1 0 2 <  3 4 
K ,  

Figure 2. Mean value (US) as a function of K4 along the transition line from the ‘Baxter’ 
to the ‘(US)’ phase. K, is not shown. 
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In contrast, within the mean-field ansatz, the thermal behaviour of the non-critical 
variable is not uniquely defined (once it has different values for the different clusters) 
and the point P is no more a bifurcation point. 

At the decoupling point, K ,  = 0, KI = 0.346 which should be compared with the 
exact value KI = 0.441. The point P, as shown by exact arguments, corresponds to the 
four-state Potts model and is located at K 2  = K4.  In the present approach we have 
K 2  = K4 = KP = 0.275, a value that has been previously obtained by Indekeu et a1 (1982) 
studying the q-state Potts model by using the same size clusters and for q = 4. The 
following exact relations are also obtained: K B  = KI/2 and K ,  = KI = - K D .  Moreover, 
for K 2  = - K4 equation (9) gives 

K 2  = -K4 = [ ln(Z/Z -4)]/4 (17)  

showing that in two dimensions (but not three) K 2  = - K4 = CO, as expected. 
Figure 3 shows the estimated critical exponent v along the AIP and PB lines 

obtained from equations (8), (15 )  and (16) respectively. At the points P, I and 
A(&+ CO) we have v p =  1.68, vI = 1.67 and v A =  0 which should be compared to the 
exact values vp = f, vI = 1 and vA = f. As remarked before (Indekeu et al 1982) this 
simple approximation gives critical exponents which are generally less accurate than 
the critical couplings. The position of the PB line (as well the PC line) is not exactly 
known and information about critical exponents is less available. Within the present 
approach we obtain vB+ vl at the point B(K,+ CO) as expected. However, we notice 
a rather pathological behaviour for v along the PB line close to the P point, which is 
probably connected to the assumption used to obtain equation (16). Such behaviour 
has also been seen in the study of the antiferromagnetic Ising model on the triangular 
lattice (Slotte 1984). No information about v4 (related to the coupling J4) can be 
obtained with the present choice for the clusters along these lines once K i  does not 
appear in the one-site cluster. 

1 

0 5 -  
I 
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In conclusion, the present approach has reproduced all the qualitative features of 
the phase diagram of the ATM. This is a consequence of the fact that the clusters used 
herein, even in their smallest sizes, carry all the basic symmetries of the model. This 
should also occur for bigger systems. We then expect that by considering bigger clusters 
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all these features will be kept with just the improvement of the values of K ,  and Kp, 
as well as the critical exponents. In fact, this is the case for the Ising model ( K4 = 0) 
(Indekeu et a1 1982). 

As a final remark, for d = 3 the main qualitative difference lies in the fact that the 
critical coupling K 2  = - K ,  is finite (see equation (17)). However, mean-field results 
(Ditzian et a1 1980) show that the model has first-order transition lines, which are very 
difficult to obtain by the present approach. 
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